Likelihood methods for detecting temporal shifts in diversification rates.

نویسنده

  • Daniel L Rabosky
چکیده

Maximum likelihood is a potentially powerful approach for investigating the tempo of diversification using molecular phylogenetic data. Likelihood methods distinguish between rate-constant and rate-variable models of diversification by fitting birth-death models to phylogenetic data. Because model selection in this context is a test of the null hypothesis that diversification rates have been constant over time, strategies for selecting best-fit models must minimize Type I error rates while retaining power to detect rate variation when it is present. Here I examine model selection, parameter estimation, and power to reject the null hypothesis using likelihood models based on the birth-death process. The Akaike information criterion (AIC) has often been used to select among diversification models; however, I find that selecting models based on the lowest AIC score leads to a dramatic inflation of the Type I error rate. When appropriately corrected to reduce Type I error rates, the birth-death likelihood approach performs as well or better than the widely used gamma statistic, at least when diversification rates have shifted abruptly over time. Analyses of datasets simulated under a range of rate-variable diversification scenarios indicate that the birth-death likelihood method has much greater power to detect variation in diversification rates when extinction is present. Furthermore, this method appears to be the only approach available that can distinguish between a temporal increase in diversification rates and a rate-constant model with nonzero extinction. I illustrate use of the method by analyzing a published phylogeny for Australian agamid lizards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximu...

متن کامل

How Well Can We Detect Lineage-Specific Diversification-Rate Shifts? A Simulation Study of Sequential AIC Methods

Evolutionary biologists have long been fascinated by the extreme differences in species numbers across branches of the Tree of Life. This has motivated the development of statistical methods for detecting shifts in the rate of lineage diversification across the branches of phylogenic trees. One of the most frequently used methods, MEDUSA, explores a set of diversification-rate models, where eac...

متن کامل

Quantitative traits and diversification.

Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions...

متن کامل

Using phylogenetics to detect pollinatormediated floral evolution

The development of comparative phylogenetic methods has provided a powerful toolkit for addressing adaptive hypotheses, and researchers have begun to apply these methods to test the role of pollinators in floral evolution and diversification. One approach is to reconstruct the history of both floral traits and pollination systems to determine if floral trait change is spurred by shifts in polli...

متن کامل

An Evaluation of an Adaptive Generalized Likelihood Ratio Charts for Monitoring the Process Mean

When the objective is quick detection both small and large shifts in the process mean with normal distribution, the generalized likelihood ratio (GLR) control charts have better performance as compared to other control charts. Only the fixed parameters are used in Reynolds and Lou’s presented charts. According to the studies, using variable parameters, detect process shifts faster than fixed pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 60 6  شماره 

صفحات  -

تاریخ انتشار 2006